cellular culprit in scarring Scientists decipher brain ’ s noise

نویسندگان

  • Bruce Goldman
  • Krista Conger
چکیده

By directly recording electrical activity from the human brain, neuroscientists at the School of Medicine have shown that distinct, distant groups of brain areas that support memory retrieval act in concert, even during sleep. The findings, described in a study published online April 8 in Neuron, confirm for the first time that specific electrical patterns of coordinated neural activity in widely separated human brain structures during memory retrieval persist throughout our cycles of waking and sleeping. The findings confirm indirect observations made in previous studies that used brain imaging. They also shed light on why the brain paradoxically appears to exhaust so much of the body’s energy in what, at first glance, seems akin to the idling of a car’s engine. The human brain is a greedy organ. Accounting for only 2 percent of the body’s weight, it consumes 20 percent of the body’s energy. Yet the rate at which the brain gobbles glucose (the fuel our brain cells run on) barely budges when we cease performing a physical or mental activity. Even at rest, the brain seems engaged in a blizzard of electrical activity, which neuroscientists have historically viewed as useless “noise.” “Increases in brain activity during conscious thoughts and actions represent only the tip of the iceberg,” said Josef Parvizi, MD, PhD, associate professor of neurology and neurological sciences and the senior author of the Neuron study. “The vast amount of energy consumption by our brain is due to its spontaneous activity at all times when we are not consciously involved in a specific task.” What, then, is all this spontaneous noise for?

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

P 88: Matrix Metalloproteinases in Neuroinflammation

Matrix metalloproteinases (MMPs) are a family of neutral proteinases that are important in normal development, cellular differentiation or migration, angiogenesis, neurogenesis, wound repair, and a wide range of pathological processes such as oxidative stress and neuroinflammation. MMPs have been demonstrated to increase the permeability of the blood–brain barrier (BBB) by degrading the c...

متن کامل

Fast Cellular Automata Implementation on Graphic Processor Unit (GPU) for Salt and Pepper Noise Removal

Noise removal operation is commonly applied as pre-processing step before subsequent image processing tasks due to the occurrence of noise during acquisition or transmission process. A common problem in imaging systems by using CMOS or CCD sensors is appearance of  the salt and pepper noise. This paper presents Cellular Automata (CA) framework for noise removal of distorted image by the salt an...

متن کامل

The Role of Exercise in Adaptation and Body Response to Doxorubicin-Induced Cellular Toxicity: A Narrative Review Study

Doxorubicin is an anthracycline antibiotic used for the treatment of a wide range of cancers. But unfortunately, due to its accumulation within healthy tissues, DOX treatment results in side effects of cellular toxicity. DOX-induced cellular toxicity occurs as a result of increasing oxidative damage, resulting in apoptosis and cell death. There is currently no standard of care practice to preve...

متن کامل

Commentary: New View on Treatment of Drug Dependence

In the 1960s, discovery of pleasure system (defined as reward system) in the brain that may underlie drug reward and addiction encouraged many scientists to investigate the mechanisms by which drug abuse affects central nervous system function. In this regard, investigators developed several drugs targeting the brain reward system for drug dependence therapy. However, no positive results obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015